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World Modeling

Recurrent world models facilitate policy evaluation. Ha & Schmidhuber, 2018. 
Neural production systems: Learning rule-governed visual dynamics. Goyal, Bengio et al., 2021. 
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Objective: Implicitly learn the dynamics laws of this 
domain.



Compositional Generalization

|objects| = 3*5
#combinations = 455

…

Assuming 5 colors for each object

|objects| = 5*5
#combinations = 53130

|objects| = 20*5
#combinations = 5.36×10²⁰



Compositional Generalization
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dynamics.
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distribution shift!⚠ 
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Higher level rule: same color => cooperation 



Compositional Generalization

Entity Composition
Generalization to composition of shapes not seen 

together during training

Relational Composition
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dynamics.

“Sticky”
Shared Attributes = Color + Adjacency

“Team”
Shared Attributes = Color
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Learning Transferable Visual Models From Natural Language Supervision. Radford et al., 2021. 
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Q: What if we only use Symbolic Embeddings?
✅ : Trivially generalizes to attribute compositions. Robust selection module!
❌ : Symbols bottleneck expressivity. The circle is Cyan, not Blue! Erroneous image 
reconstruction.
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Q: What if we only use Latent Embeddings?
❌ : Tendency to overfit to attribute compositions seen during training.
✅ : Latent embedding contains very expressive features. Good image 
reconstructions!   
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Using both representations:
✅ : Selection robust to attribute compositions.
✅ : Latent embedding captures relevant reconstruction features.

Hypothesis
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Takeaways 

● Explicit symbolic knowledge helps 
with compositionality 

● Extend, rather than replace, deep 
representations

● Foundation models over language (and 
code) give symbols for free

More Information:
● https://bit.ly/cosmos-wm

https://bit.ly/cosmos-wm

