

Neurosymbolic C Programming for Scientific Discovery

Atharva Sehgal

atharvas@utexas.edu

Scientific Discovery

Goal: We want AI to achieve human level performance at research in the natural sciences.

Retrograde Planetary Motion

c. The Astronomical Revolution: Copernicus- Kepler-Borelli

Observation: Apparent Retrograde Planetary Motion **Theory:** Heliocentric Model

c.The Astronomical Revolution: Copernicus- Kepler-Borelli

Theory: Heliocentric Model

c.The Astronomical Revolution: Copernicus- Kepler-Borelli

Theory: Heliocentric Model

c.The Astronomical Revolution: Copernicus- Kepler-Borelli

Theory: Heliocentric Model

Symbolic Regression

Symbolic Regression Algorithms

Symbolic Regression Algorithms

c. PySR. Miles Cranmer

PySR's impact

Discovery of a Planar Black Hole Mass Scaling Relation for Spiral Galaxies

Benjamin L. Davis ¹, Zehao Jin ¹

¹Center for Astrophysics and Space Science, New York University Abu Dhabi

Interpretable machine learning methods applied to jet background subtraction in heavy-ion collisions

Tanner Mengel ¹, Patrick Steffanic ¹, Charles Hughes ^{1,2}, Antonio Carlos Oliveira da Silva ^{1,2}, Christine Nattrass ¹

Finding universal relations in subhalo properties with artificial intelligence

Helen Shao ¹, Francisco Villaescusa-Navarro ^{1,2}, Shy Genel ^{2,3}, David N. Spergel ^{2,1}, Daniel Angles-Alcazar ^{4,2}, Lars Hernquist ⁵, Romeel Dave ^{6,7,8}, Desika Narayanan ^{9,10}, Gabriella Contardo ², Mark Vogelsberger ¹¹

¹Princeton University, ²Flatiron Institute, ³Columbia University, ⁴University of Connecticut, ⁵Center for Astrophysics | Harvard & Smithsonian, ⁶University of Edinburgh, ⁷University of the Western Cape, ⁸South African Astronomical Observatories, ⁹University of Florida, ¹⁰University of Florida Informatics Institute, ¹¹MIT

Modeling the galaxy-halo connection with machine learning

Ana Maria Delgado ¹, Digvijay Wadekar ^{2,3}, Boryana Hadzhiyska ¹, Sownak Bose ^{1,7}, Lars Hernquist ¹, Shirley Ho ^{2,4,5,6}

c. PySR. Miles Cranmer

¹Center for Astrophysics | Harvard & Smithsonian, ²New York University, ³Institute for Advanced Study, ⁴Flatiron Institute, ⁵Princeton University, ⁶Carnegie Mellon University, ⁷Durham University

Sketch of PySR's Exploration Space

Sketch of PySR's Exploration Space

Goal: How can we increase exploration in relevant parts of the search space?

LaSR: Symbolic Regression with a Learned Concept Library

Arya Grayeli*, Atharva Sehgal*, Omar Costilla-Reyes, Miles Cranmer, Swarat Chaudhuri

What is a Concept? Desiderata I: Symbolic Abstraction

 $y = ax^k + \epsilon \Leftrightarrow$ "Power Law Trend"

What is a Concept? Desiderata II : Symbolic Guidance

Concepts (by Physicist or LLM)

"Wave strain diminishes as distance increases" "Wave strain has extraordinarily small magnitude"

Guide the $h=rac{2G}{c^4}rac{1}{r}rac{\partial^2 Q}{\partial t^2}$ search for

Sketch of Search Space

After Phase I: "Islands" of expressions

Sketch of Search Space

After Phase 2: Concepts for each "Island"

LaSR Results I - Performance

 Concept Guidance accelerates scientific discovery.

GPlearn	AFP	AFP-FE	DSR	uDSR	AIFeynman	PySR	LaSR
20/100	24/100	26/100	23/100	40/100	38/100	59/100	59 + 7/100

Table 1: Results on 100 Feynman equations from [41]. We report exact match solve rate for all models. LASR achieves the best exact match solve rate using the same hyperparameters as PySR [8].

• LaSR outperforms PySR even with local language models (llama-3-7b, 1%)

		LASK (Liama3-8B)			LASR $(GPI-3.5)$
Type of Solve	PySR	p=1%	p=5%	p = 10%	p = 1%
Exact Solve	59/100	63/100	65/100	65/100	66/100
Almost Solve	7/100	6/100	9/100	12/100	13/100
Close	16/100	13/100	14/100	11/100	9/100
Not Close	18/100	18/100	12/100	13/100	13/100

I CD (II

 \mathbf{a} or \mathbf{D}

Table 2: Evaluation results on Feynman dataset by cascading LASR's LLM backbone (llama3-8b, gpt-3.5-turbo) and changing the probability of calling the model (p = [0.01, 0.05, 0.10]) in the order of increasing concept guidance. LASR outperforms PySR even with minimal concept guidance using an open-source LLM.

What is a Concept? Desiderata II : Symbolic Guidance

Concepts (by Physicist or LLM)

"Wave strain diminishes as distance increases" "Wave strain has extraordinarily small magnitude"

Guide the $h=rac{2G}{c^4}rac{1}{r}rac{\partial^2 Q}{\partial t^2}$ search for

LaSR Results II - Hints

Results III - Case Study

$F = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2}$

$$F = \frac{\left(\left(\left(\left(\left(\left(\left(\left(\left(\left(\left(\left(\left(\frac{q_2 \cdot 3.382}{r}\right) - \left(\frac{\sin\left(\frac{0.017}{\exp(B)}\right)}{\exp(C)}\right)\right) / 0.712\right) \cdot q_1\right) \cdot 0.087\right) / \epsilon\right) \cdot 0.191\right)}{r}$$

Eq 10: Coulomb's Law

- Inverse Square Law
- Directly proportional to charges
- Force symmetric w.r.t charges

PySR's Solution

- Reduces to ground truth after 10 steps of simplification.
- Unwieldly
- Fitting more constants => more optimization errors

Results III - Case Study

 $F = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2}$

Eq 10: Coulomb's Law

- Inverse Square Law
- Directly proportional to charges
- Force symmetric w.r.t charges

$$F = \frac{q_1}{\left(\frac{r}{q_2}\right) \left(r + \frac{1.9181636 \times 10^{-5}}{q_2}\right) \epsilon} \cdot 0.07957782$$

$$= \frac{q_1}{\left(\frac{r}{q_2}\right) \left(r + \frac{1.9181636 \times 10^{-5}}{q_2}\right) \epsilon} \cdot \frac{1}{4\pi} \qquad \text{(Substitute constant)}$$

$$= \frac{q_1 q_2}{r \left(r + \frac{1.9181636 \times 10^{-5}}{q_2}\right) \epsilon} \cdot \frac{1}{4\pi} \qquad \text{(Simplify denominator)}$$

$$\approx \frac{q_1 q_2}{r \left(r\right) \epsilon} \cdot \frac{1}{4\pi} \qquad \text{(Negligible. } \frac{1.9181636 \times 10^{-5}}{q_2} \approx 0)$$

LaSR's Solution

- Reduces to ground truth after 4 steps of simplification
- Smaller models synthesize simpler equations!

Results III - Case Study

$F = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2}$

Eq 10: Coulomb's Law

- Inverse Square Law
- Directly proportional to charges
- Force symmetric w.r.t charges

Iteration Discovered Concept

- 2 The good mathematical expressions exhibit [...] with a focus on **power functions and trigonometric functions** [...]
- 6 The good mathematical expressions exhibit [...] symmetry or regularity [...]
- 24 The good mathematical expressions have [...] with a specific pattern of **division and multiplication**

LaSR's Concepts (Limitations)

- Cannot guarantee factuality or correctness.
- Good concepts depend on LLM training. Concepts can mislead scientists.

Outline of this Talk

- I. What is Scientific Discovery?
 - I. Symbolic Regression
- 2. Symbolic Regression with a Concept Library
- 3. Additional Application: Visual Reasoning
- 4. Discussion

Recap: Symbolic Regression

Visual Reasoning

Observation: Geolocated Picture

Theory: Crowdsourced identification

Data: Geotagged sightings

Visual Programming

Compositional Question Answering

Is there a helmet in the photo that is not blue?

Prediction: no

	IMAGE
	<pre>BOX0=Loc(image=IMAGE, object='helmet')</pre>
	IMAGE0=Crop(bbox=BOX0)
blue	ANSWER0=Vqa(image=IMAGE0, question='What color is the helmet?')
no	<pre>ANSWER1=Eval(expr="'yes' if {ANSWER0} != 'blue' else 'no'") =Eval(expr="'yes' if 'blue' != 'blue' else 'no'")</pre>

Outline of this Talk

- I. What is Scientific Discovery?
 - I. Symbolic Regression
- 2. Symbolic Regression with a Concept Library
- 3. Additional Application: Visual Reasoning
- 4. Discussion